MA 3053 Section 01

Practice Exam 1

November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if $g \circ f$ is an injection, then f is an injection.

Name:_

2. Let $f: X \to Y$. Given functions $g, h: W \to X$ such that whenever $f \circ g = f \circ h$, then g = h; show that f is injective.

3. Let $f: X \to Y$ and $P_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$f^{-1}\left(\bigcup_{\alpha\in A}P_{\alpha}\right)=\bigcup_{\alpha\in A}f^{-1}(P_{\alpha})$$

4. Let $f: X \to Y$ and $P_{\alpha} \subseteq X$ for every $\alpha \in A$ Show

$$f\left(\bigcup_{\alpha\in A}P_{\alpha}\right)=\bigcup_{\alpha\in A}f(P_{\alpha})$$

5. Let \sim be a relation on $X = \mathbb{Z} \times \mathbb{Z}$ by $(a, b) \sim (c, d)$ if and only if a + d = b + c. Show \sim is an equivalence relation on X.

6. Let $f: X \to Y$. Let \sim be a relation on X by $x \sim y$ if and only if f(x) = f(y). Show \sim is an equivalence relation on X.

7. Let \mathcal{F} be a family of sets and let \leq be a relation on \mathcal{F} by $X \leq Y$ if and only if $X \subset Y$. Show \leq is a partial order on \mathcal{F} .

8. Let \leq be a relation on \mathbb{R}^n defined as follows: Let $x = (a_1, \ldots, a_n)$ and $y = (b_1, \ldots, b_n)$ be distinct elements of \mathbb{R}^n . Let $k \in \mathbb{N}^+$ be the least number such that $a_k \neq b_k$, then define $x \leq y$ if and only if $a_k < b_k$. Show \leq is a partial order on \mathbb{R}^n .

9. What are the multiplication and addition tables for the congruence classes in $\mathbb{Z}/14\mathbb{Z}$.